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ABSTRACT 

Groupware systems have been popularized by video chat (e.g., Skype), instant messaging, e-mail, 

and revision management systems (e.g., SVN). Of particular interest to my research are 

interactive groupware systems, which need to communicate with each other quickly without 

perceptible delay. In this paper, I design a peer-to-peer (P2P) protocol that shares a dictionary 

data structure for communication in interactive groupware systems. A P2P protocol allows 

groupware clients to form an ad-hoc network in private networks and networks isolated from the 

Internet. Communication in groupware systems can be accomplished using shared memory, and 

a dictionary partitions shared memory into application-specific chunks. The P2P dictionary is 

optimized for interactive responsiveness by replicating subsets of the dictionary’s entries only to 

subscribed clients. The design of this P2P dictionary is evaluated in star, ring, line (broken ring), 

and mesh topologies. I discover that the P2P dictionary scales to a large number of nodes when 

small data types are stored. The contribution from this research is a P2P dictionary optimized for 

interactive responsiveness. 

1 INTRODUCTION 
A groupware system enables collaboration between people using a software system. An ideal 

groupware system supports real-time communication and collaboration, coordination in a shared 

workspace, and simultaneous interaction in a workspace [6]. Examples of groupware systems 

include e-mail and instant messaging systems as well as simultaneous multi-user drawing and 

document editing applications. 

Groupware systems need to communicate with each other using a network protocol. Several 

communication mechanisms have been investigated in the CSCW (ACM conference on 

computer-supported cooperative work) community. This work focuses on a shared memory 

approach, where clients share the same model in a distributed model-view-controller paradigm.
1
  

Boyle and Greenberg [1] created a rapid prototyping toolkit that uses a shared dictionary to 

partition shared memory. The toolkit uses a central server to coordinate changes among 

groupware clients, which I extend by proposing a P2P approach. 

In this research, I design a P2P protocol for sharing a dictionary data structure in order to achieve 

interactive responsiveness for groupware clients. A P2P network scales to many clients without a 

single bottleneck, but it requires more overhead to handle concurrency compared to a client-
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server architecture. A dictionary data structure partitions shared memory into application-

specific chunks, which allows clients to subscribe to subsets of the dictionary. Consider the case 

of a drawing application. A canvas is shared among all clients, but some keys for drawing cursor 

and colour are client-specific. Only a subset of the dictionary entries needs to be replicated to 

specific clients. 

I consider several design decisions to achieve interactive responsiveness in a P2P dictionary. 

When a dictionary key is changed, metadata is immediately propagated throughout the network, 

which makes a best-effort arrival time for each client. Dictionary content is retrieved by delayed 

propagation: subscribed clients request the actual content only after metadata is updated, which 

avoids unnecessary transmission of unused dictionary entries. 

The ideal network for this P2P dictionary has several dozens of nodes,
2
 not exceeding a hundred 

nodes, in a stable network. Given that the system is designed for interactive groupware, I assume 

that there is no churn or partitions in the network, which would make the system non-interactive. 

All nodes are assumed to be trustworthy. 

The P2P dictionary is evaluated in different network topologies. A star topology is used to 

simulate a central server network. Ring and line topologies are used to simulate basic P2P 

substrates. A mesh topology is constructed from a structured ring substrate by adding a random 

edge to each node. This paper finds that as the number of nodes increases, a mesh topology 

performs better in maintaining a low arrival time whereas the star topology becomes a bottleneck. 

Ring and line topologies, due to their construction, perform worse in almost all experimental 

conditions. 

Any two peers can modify a dictionary entry concurrently using an optimistic approach, which 

assumes that conflicts rarely happen. If a same-revision conflict happens, the protocol resolves 

the conflict by a democratic vote (i.e., whoever wins a vote becomes the most recent copy). 

Frequent-change conflicts are not dealt with in this system. 

The remainder of the paper is structured as follows. The paper begins with a background into 

groupware systems. Then, prior work is reviewed in existing mutable P2P systems. The primary 

contribution of the paper is presented next, the design and implementation of a P2P dictionary. 

Lastly, the paper performs an evaluation and concludes the paper.  

2 BACKGROUND 
Before describing the design of the P2P dictionary, we need a background about groupware 

systems and dictionary data structures. This section briefly introduces these concepts. 

2.1 Groupware System 
A groupware system enables collaboration between people using computers. There are several 

types of groupware systems, which are shown along two dimensions as shown in Table 1. A 

groupware system can facilitate same-time collaboration when two individuals work together to 

produce an outcome. A groupware system can facilitate different-time collaboration by saving 

messages left by another person for retrieval at another time (e.g., e-mail). 

                                                 
2
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The place where collaboration occurs is another dimension to consider. Same-place collaboration 

happens in a meeting by sharing a presenter’s view on everyone’s computer. Different-place 

collaboration happens when remote participants share the same artifact such as a drawing canvas, 

but they are geographically remote. 

  Same Time Different Times 

Same Place Face-to-face interaction Asynchronous interaction 
(geotagged reminders) 

Different Places Synchronous distributed interaction 
(voice chat, instant messaging) 

Asynchronous distributed interaction 
(e-mail) 

Table 1.Groupware time space matrix, borrowed from [5]. Examples are provided in parentheses. 

These types of groupware systems have differing requirements. This work focuses on same-time 

collaboration systems. The requirement for such a system is interactive responsiveness, a best-

effort arrival time from a sending to receiving peer. Issues that arise in different-time 

collaboration such as partitioned networks and dropped peers, therefore, are beyond the scope of 

this research. 

An interactive groupware system imposes specific constraints on the behaviour of an application. 

A groupware system has some tolerance in its arrival time. A video stream that is 400 ms 

delayed is annoying, but it does not stop a conversation. The acceptable tolerance varies based 

on the type of application. On the other hand, a groupware system cannot freeze while data is 

being requested by a client. For instance, locking a drawing canvas when someone else is 

updating it is intolerable. 

2.2 Dictionary Data Structure 
As presented earlier in this paper, a dictionary data structure is used to share memory between 

clients. Groupware systems may share massive amounts of data, but only subsets of the 

dictionary are of interest to a given client. A dictionary data structure allows clients to subscribe 

to specific <key, value> pairs. 

To understand how a dictionary structure may be used in a distributed model-view-controller 

application, consider a drawing application. The drawing canvas must be consistent amongst all 

peers for collaborative editing (Figure 1). Each client can modify the drawing canvas by adding, 

modifying, and removing graphical objects. On the other hand, peers do not need to know about 

another peer’s drawing cursor.
3
 Thus, each client should only subscribe to its own drawing 

cursor (i.e., mouse position and drawing colour). Table 2 shows the dictionary entries that could 

be used to model Figure 1. 

The dictionary keys can be named such that global objects are subscribed by all clients. In the 

example, any key prefixed with “canvas” is required by all clients. Other keys can be prefixed 

with a client-specific identifier such as “client1” and “client2”. A dictionary provides highly 

flexibility in sharing data to fit the needs of many groupware systems. 

                                                 
3
 Groupware researchers have found advantages in knowing another client’s active working area for awareness, but 

it is beyond the scope of this paper. 
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Figure 1. Shared drawing canvas. 

  Stored 
at client 

Key Value 1 2 N 

Canvas.Object1  ● ● ● 

Canvas.Object2  ● ● ● 

Canvas.Object3  ● ● ● 

Client1.MousePosition (20,40) ●   

Client1.DrawingColour Blue ●   

Client2.MousePosition (60,90)  ●  

Client2.DrawingColour Green  ●  

Table 2. Sample dictionary and corresponding 

canvas for a groupware drawing application. 

3 RELATED WORK 

3.1 Dictionary Design 
The concept of partitioning shared memory into application-specific chunks of information was 

previously proposed by Grouplab Shared Dictionary [1] and LIME [16]. Grouplab Shared 

Dictionary partitions shared memory using a dictionary data structure and API. A central server 

replicates dictionary entries to its clients, and clients express interest in entries using 

subscriptions. LIME [16] provides a shared tuple space that stores any type of tuple. LIME does 

not provide an implementation, only a theoretical design. Both systems have mechanisms to 

store, retrieve, and listen to updates in shared memory. Interactive responsiveness is achieved in 

these systems implicitly by pushing data to the clients prior to a client requesting the data. 

The main difference between prior work and this work is a detailed network protocol design that 

does not assume the existence of a central server. This work details the design of a protocol to 

discover and replicate dictionary entries on a per-client basis. 

3.2 Network Design 
In order to build a P2P dictionary, I review existing P2P systems that deal with mutable content. 

This section considers four topics: network topology, data interest, consistency, and caching 

strategies.  

Several network topologies are available for a groupware system. A client-server architecture 

was taken in mutable systems such as the Grouplab Shared Dictionary [1], but it is not a P2P 

approach. File systems such as OceanStore [11] and Coda [20] propose a two-tier system where 

second-tier peers exchange content with each other and consult with first-tier peers for content 

locations. BitTorrent, Napster [9], and the Eliot file system [22] use a directory server to supply a 

list of initial peers to contact. Lastly, a network can be completely decentralized with self-

organizing clients such as in Gnutella and Freenet [9]. 
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A P2P approach allows data to be distributed over several clients, but there is a choice in how 

that data is distributed. The Clique replicated file system [17] has interest in all files in a file 

system. Distributed hash table approaches such as Chord [23] and Pastry [19] assign data based 

on a hashed value of a key that closely matches a peer’s randomly assigned ID. XOROS [4] 

complements the hash assignment by storing redundant copies at peers closes to the hashed value. 

Other systems express the data interest based on usage. The Coda file system [20] maintains a 

per-client cache of most recently used files. BitTorrent uses torrents to specify which files a peer 

is interested in receiving and sharing. Research in P2P games [2][10] introduce a locality of 

interest, the area surrounding a player’s position in a game map. 

After selecting the data of interest, P2P systems must decide if and when to cache content. File 

sharing systems such as BitTorrent and Gnutella wait until the user issues a download request 

before pulling them from the P2P network. Multimedia systems such as GridMedia [25] push 

updated content immediately. Peers can also poll other peers periodically for updates [7][12][18]. 

A Gnutella extension [12] caches content using a hybrid push-pull protocol by updating 

immediately after receiving updated metadata and polling neighbours periodically.  

Consistency has been a major issue for P2P systems that store mutable content (i.e., content that 

can be modified by any peer). The Thomas write rule [24] states that the most recent copy should 

be used. LOCUS [15] uses version vectors that record the number of changes made at each site 

since a previous reconciliation. The Ivy file system [13] maintains a log of all changes with 

histories to previous changes. The Clique file system [17] saves version histories, which are 

checksum logs of previous data [8]. Alternatively, XOROS [4] locks the content before making a 

change. P2P gaming systems [2][10] employ time-limited locks to ensure game consistency. 

The P2P dictionary proposed in this paper extends from the prior work. My P2P dictionary uses 

a (1) completely decentralized network topology, (2) specifies data of interest using 

subscriptions (a generalization of user-downloaded torrents), (3) uses a hybrid push-pull protocol 

for caching data, and (4) ensures consistency based on the Thomas write rule. A fully 

decentralized network topology is chosen because it forms in ad-hoc networks without requiring 

any peer to become the “official” node. Subscribing to a minimum subset of keys allows 

interested peers to maintain data that they are interested in receiving, which is similar to people 

choosing torrents based on interest. A hybrid push-pull protocol is used because a push protocol 

achieves the best-effort response time and delayed pull reduces unnecessary network traffic. The 

Thomas write rule provides a simple way to identify the latest content on the network, using a 

network’s built-in latency as the clock. 

4 DESIGN OF A P2P DICTIONARY 
The P2P dictionary adheres to the four design decisions iterated in the Related Work section. The 

P2P dictionary design achieves a subscription-based replication model using the following rule: 

A peer replicates dictionary entries of interest. 

This section details the design of a P2P dictionary that is optimized for interactive 

responsiveness by replication and subscriptions. 
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4.1 Metadata 
The dictionary avoids the lookup cost of a distributed hash table by fully replicating all a 

dictionary’s metadata to each client using a best-effort approach. The metadata consists of tuples 

with the following entries: 

- Key: key is used to index a dictionary entry 

- Owner ID: identifies the client that most recently modified the key 

- Revision: identifies a global revision counter for the key 

- List of senders: list of IDs from the Owner ID to a given client 

- Subscribed: a Boolean value indicating that a key has a subscription 

Each client’s dictionary is uniquely assigned an ID number. The owner ID is assigned to the 

client when it writes to a dictionary entry. The owner ID, revision, and list of senders are used 

together to prevent duplicate messages on the network. 

4.1.1 Metadata Replication 

Each P2P dictionary notifies changes to the metadata using immediate propagation. Immediate 

propagation describes an approach where updates are pushed to a receiving peer from a sending 

peer; the receiver does not have to request updates. 

4.1.2 Duplicate Metadata 

To prevent cyclic loops, a peer performs examines the metadata message before forwarding it. A 

list of senders (Table 13) contains intermediate peers, identified by their ID, from the originating 

peer to receiving peer. If an arriving metadata summary already has the peer’s ID in the list, the 

message is discarded. When forwarding the message, a peer adds its own ID to the list of senders. 

A peer determines if a metadata message has been already seen. The Owner ID and revision 

uniquely identifies the version of a metadata message. If both values are identical, the message 

has already arrived from another path and propagated to its neighbours. Thus, the duplicate 

message can be discarded. The versioning strategy is further explained in §4.2.2. 

The first arrival of a metadata update is the fastest update, so the list of senders is saved from the 

first metadata update. Duplicate metadata updates would have a different list of senders, but they 

would specify longer paths in the network. 

4.2 Data 
The dictionary data exists only at subscribed or proxy peers. The additional fields for a 

subscribed entry are: 

- Value: actual content 

- Content Type: Table 6 lists the currently supported content types in the dictionary. A 

special content type exists to identify removed content. 

This section addresses the case where data exists at a subscribed peer. Proxy peers are discussed 

afterward. 

4.2.1 Data Replication 

Dictionary data is transmitted by delayed replication: a subscribed peer replicates a dictionary 

entry after receiving a metadata update from one of its neighbours. An example of this message 

is presented in Table 14. This avoids content from being sent to an unsubscribed peer, which 
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conserves network bandwidth and improves the responsiveness for other metadata updates. 

Transmission delay is assumed to be larger than round-trip latency.
4
 The dictionary entry 

becomes inconsistent when it knows of new content but has not yet received it.  

Delayed replication assumes that the sending peer already has the data. If that peer does not have 

the data, a proxy request is made to another peer, which is described next. 

4.2.2 Data Replication via Proxy 

If a peer’s makes a request to an unsubscribed peer, peers along the list of senders are consulted 

to retrieve the dictionary entry. Figure 2 (top row) shows an example of a proxy request. 

Intermediate peers between the originating peer and interested peer become proxy subscribers. 

Table 15 shows an example message exchange. 

The path will lead to at least one peer with the dictionary entry, assuming no peers have departed. 

If the originating peer departed but another peer has the dictionary entry, a flooded message will 

get a response for the data. If no other replicas exist in the network, the requesting peer remains 

in an inconsistent state and an exception is raised in the API. 

When creating proxy paths, the design assumes that a peer will request another peer’s data 

indefinitely. Proxy paths, thus, are maintained by subscribing each intermediate node to that 

dictionary entry. In the case where a proxy path is no longer needed, methods in the API are 

called to remove the subscription. 

An alternative to a proxy path subscription is a shortcut (directly connecting to the peer with 

content). A shortcut requires that each node’s IP address is known and reachable. A popular peer, 

however, could have too many shortcut connections, thus becoming a star topology and a 

bottleneck (see the Evaluation section). A proxy path, on the other hand, maintains the same 

number of in-bound and out-bound edges at each node and distributes the request for popular 

content onto other nodes (the proxy path nodes). 

 

Figure 2. Metadata replication and proxy request. The shaded area highlights a proxy request and response. 

                                                 
4
 The postal mail system has larger round-trip latency than transmission delay. In this case, the sender should send 

large amounts of data rather than two letters. 
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4.3 Versioning and Concurrent Changes 
Concurrency is handled in the dictionary using an optimistic approach. An optimistic approach 

assumes that conflicts rarely occur. This P2P dictionary uses versioning with an owner ID and 

revision number to handle concurrent changes. Owner ID identifies the client who modified a 

dictionary entry, and revision is a global revision number for each dictionary entry. 

Peers are consistent when both peers have the same <owner:revision> tuple. An inconsistency 

occurs when one peer has an older copy of the entry than another peer. The following paragraphs 

describe these two situations. 

4.3.1 Consistent case 

Let us begin with peers A and B at <A:0> as shown in Table 3. Both peers A and B want to 

change a dictionary key k. In the normal case, peer A makes the change first and then peer B 

makes the change after receiving peer A’s update. Peer B receives <A:1> and then peer B makes 

the change <B:2>. Peer B is a direct descendant of peer A’s change so peer A can receive the 

update <B:2> without a problem. 

 Version at Peer A Version at Peer B 

Original <A:0> <A:0> 

Peer A Modifies <A:1> <A:0> 

Peer B -> Peer A <A:1> <A:1> 

Peer B Modifies <A:1> <B:2> 

Peer A -> Peer B <B:2> <B:2> 

Table 3. Consistency is ensured for a dictionary entry using a <owner:revision> tuple. 

4.3.2 Conflict case 

In a conflicting condition, both peers A and B make a change at the same time before the other 

peer can receive the update. Two types of conflicts are addressed: same-revision conflicts and 

frequent-change conflicts. 

In a same-revision conflict, both versions are identical but the owners are different. To deal with 

a same-revision conflict, a democratic vote is conducted. Suppose that peer A has <A:1> and 

peer B has <B:1>. Both peers increment the revision number by a small randomly chosen integer 

(implemented as a number chosen randomly from 1–10). Suppose peer A decides <A:6> and 

peer B decides <B:9>. Neither peer knows about the value chosen by the other peer. After 

flooding their messages, peer B’s revision number is higher and replaces peer A’s change. Since 

any peer in the network can become a proxy subscriber, any peer may participate in resolving a 

same-revision conflict. 

A frequent-change conflict happens when peer A changes a key more frequently than peer B. 

Peer B does not receive any of peer A’s updates, so it is unaware that a conflict existed in the 

network. The Thomas write rule [24] governs conflicting versions. The most recent transaction is 

the officiating copy and previous changes are disregarded. The network latency in the network is 

implicitly used to determine the most recent arrival. 

To handle a frequent-change conflict and preserve intermediate changes, a client application 

should avoid concurrent writes to the same dictionary key. A peer-specific identifier should be 

included in the key. 
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4.4 Network Design 

4.4.1 Substrate and Construction 

The P2P dictionary automatically constructs a mesh topology. The mesh is formed by connecting 

each node in a ring structure and then adding a random edge. The position within the ring is 

determined by a randomly chosen 32-bit ID number assigned to each node. 

Each peer makes at most two out-degree connections based on the design. Inbound connections 

from another peer, however, are unbounded to handle the randomly assigned edges. A worst-case 

scenario, thus, would resemble a star topology where one node is connected to all other nodes. 

4.4.2 Joining and Departing Peers 

When a new peer joins an existing network, it requests all dictionary metadata from its 

neighbours. The new peer also updates its neighbours with its own dictionary metadata. 

The current design of departing peers is to leave immediately. If the departing peer is the owner 

of a dictionary entry, that entry will no longer be retrievable. For future work, I intend to add a 

mechanism to ensure that all requests are serviced before departure and remove unsubscribed 

dictionary entries. 

5 IMPLEMENTATION 
The API of the P2P dictionary follows the conventions of Grouplab Shared Dictionary, but the 

underlying implementation is new for this paper. This section begins by describing the 

implementation details and then summarizes relevant API details. 

P2P Dictionary

User-Facing API

ConnectionNetwork Construction

Peer Discovery

Apple Bonjour

Reader Thread

Writer Pool

1 2 3

 

Figure 3. Components of the P2P dictionary. 

The P2P dictionary is written in C# using the Microsoft .NET Framework. The P2P dictionary 

consists of a network construction, connection, and writer component as shown in Figure 3. The 

code runs independent of third-party libraries except for the network construction component, 

which uses Apple Bonjour’s service discovery protocol. Bonjour requires a local area network 

for discovering peers. The expected number of nodes in a local area network would be in the 

hundreds, but it actually depends on the router configuration. 
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5.1 Network Construction Components 
Network construction relies on a third-party library to discover other peers without a central 

server. Apple Bonjour provides a service discovery protocol that broadcasts over local area 

networks. The P2P dictionary registers each instance to Bonjour for discovery by other peers.  

The peer discovery component maintains a list of registered P2P dictionaries found by Apple 

Bonjour. Both the node ID and IP address for each dictionary is saved. A P2P dictionary can 

have more than one IP address if a computer has multiple network cards (e.g., wired and 

wireless). The node ID prevents duplicate connections to the same node. 

The network construction component periodically checks the peer discovery component for new 

nodes (currently, every 5 seconds). If there are new neighbours, the peer disconnects from the 

old node and makes a new connection to the new node in order to maintain the same out-degree 

edges. Since in-degree nodes are formed by random assignment, they are not affected by network 

construction. 

The P2P dictionary can manually connect to any Internet-reachable IP address using API 

methods. This allows the client software to construct other types of network topologies. 

5.2 Connection Component 
The connection component uses TCP client-server connections to communicate between peers. 

The message protocol extends the HTTP 1.1 transport protocol. In HTTP 1.1, a client sends 

requests to a server and the server responds back. The P2P dictionary relaxes the client-server 

restriction such that both sender and receiver can request and respond. 

The HTTP protocol is extended to allow independent requests and responses. Extra headers as 

shown in Table 13 are included in the response header to identify the content being delivered.  

Requests and response are used to push and pull messages, respectively. Any response may have 

been propagated through several nodes, which can be inspected through the list of senders in its 

header. Requests behave identically to normal HTTP and affect a single peer only. HTTP 

requests can be issued by a web browser to debug P2P dictionary instances. 

The HTTP protocol was chosen over alternatives such as XML and binary data because the 

HTTP protocol is human-readable and asymmetric by design. XML is a symmetric data type, 

which requires extra fields to delineate a push or pull operation. Binary messages were not 

chosen because they are difficult to debug. 

5.3 Reader and Writer Components 
Each TCP connection creates its own reader thread. The reader thread’s procedure is: 

1. Handle incoming data. 

a. Read the header and contents. 

b. Queue messages to respond to the incoming peer, or otherwise queue messages to 

forward to other neighbouring peers.  

c. Repeat steps a–b if there is more data on the wire. 

2. Sleep for 15 ms. 

3. Repeat steps 1–2. 
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Three global writer threads are maintained for a P2P dictionary. Each writer thread handles one-

third of the outgoing messages. A writer thread’s procedure is: 

1. Empty send queues. 

a. Select one of the peers. 

b. Write one message from the send queue. 

c. Select another peer and repeat steps a-b. 

d. Start from the first peer and repeat steps a–c until all queues are empty. 

2. Sleep for 15 ms. 

3. Repeat steps 1–2. 

A known limitation of the reader and writer components is a 15-ms delay in each thread. This 

delay cannot be further decreased because thread switching in .NET Framework could take 15 

ms, a limitation in the runtime environment. The P2P dictionary’s behaviour becomes 

unpredictable if keys are written at a rate faster than 15 ms. 

5.4 User-Facing API 

5.4.1 Subscription 

A client application specifies which keys it is interested in using. The distribution of key 

subscriptions in a network is specific to the client application, the assignment of a node ID, and 

the construction of proxy paths. Subscriptions are added using a function call in the API, 

AddSubscription(pattern) or writing to a dictionary entry with put(key, value). Subscriptions are 

maintained on a per-client basis. 

Wildcard Meaning 

* Matches any length of string including zero-length strings. 

? Matches any single character 

# Matches any single digit 

[charlist] Matches any character in the charlist 

[!charlist] Matches any character that is not in the charlist 

[lower-upper] Matches any character between lower and upper (using ASCII ordinal rules) 
Table 4. Wildcards used for pattern matching, based on the implementation of Visual Basic 6. 

5.4.2 API Methods 

get(key) retrieves the most-recently received value of a key. The data already exists on the peer 

before get(key) was called; thus, the method is equivalent to accessing a local dictionary. If the 

value is not yet received or does not exist, an exception is raised to the caller. 

get(key, timeout). To handle a subscribed entry that has not arrived yet, the API provides a method 

that waits for data, get(key,timeout). The waiting period has a finite timeout (currently, 500 ms). 

This allows applications with tolerances to interactive responsiveness to wait for data to arrive. 

After a timeout, an exception is raised to the caller (Table 2). 

 Subscribed Not subscribed 

Received Returns value immediately Raise an error in the API 

Not received Wait for dictionary entry Raise an error in the API 
Table 5. Consistency for a dictionary entry at a peer. 
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put(key) stores a value into the dictionary. The peer that calls put(key) becomes the owner of that 

key in the metadata. A metadata summary of the change is immediately propagated to its 

neighbours. 

5.4.3 Data Types 

The Microsoft .NET Framework provides object serialization, which allows many data types to 

be stored in the dictionary. Basic data types (Table 6) are sent using plain text to avoid the 

overhead of serialization and improve responsiveness. 

Data Type Size Signature Example 

Boolean 4 bytes number/bool True 

Integer 2, 4, 8 bytes number/int16 
number/int32 
number/int64 

123 

Floating point 4, 8 bytes number/single 
number/double 

123.456 

Text Variable length text/plain Hello world 

Binary array Variable length application/octet-stream  

.NET object Variable length application/vs-object  

Removed 0 bytes application/nothing  

Null data type 0 bytes application/null  
Table 6. Data types supported in the P2P dictionary. The .NET object data type encapsulates all other serializable data 

types in the .NET Framework. 

6 EVALUATION 
The P2P dictionary is designed for interactive responsiveness. This section assesses interactive 

responsiveness by reporting the arrival times of a key from an originating peer to a receiving 

peer. 

6.1 Setup 
The P2P dictionary was evaluated in a simulation environment running on an Intel Core 2 Quad 

CPU (Q6600) running at 2.4 GHz with 3.25 GB of RAM. The simulation environment was a C# 

program running on the .NET Framework 4.0. The simulation program spawned several 

instances of the P2P dictionary in the same process. The network construction and ID number 

generation were disabled to place nodes in specific network topologies. An extra component was 

included in the reader and writer threads to simulate network delay. The computer’s actual TCP 

network stack (local loopback) was used to communicate between dictionaries. 

The simulation environment measured the arrival time of a dictionary key, which is the time that 

it takes for an originating peer to send data to a destination peer. This represents a situation 

where one peer “talks” to another peer. The paired node interests are assigned such that the 

number of hops between nodes is tested for all conditions. Node i is assigned an ID i, where i is a 

node from 0 to n – 1, and n is the number of nodes. The nodes are selected such that i and n – i – 

1 subscribe to each other’s keys. 

The arrival time is measured by an event raised by the dictionary’s API. The reported arrival 

times are in units of simulated time units (su). The simulation time for the current set of tests is 

based on the clock of the running computer; thus, su are milliseconds.  
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Several variables are manipulated to evaluate the P2P dictionary under different conditions: 

 Network topology. Four network topologies are considered. A star topology is used as a 

baseline to model a central server model. Unlike a true central server, a star topology 

fully replicates metadata to all peers. A ring topology is compared, which represents a 

basic structured P2P network promoted by Chord and Pastry.  A line topology is 

compared to model a performance-degraded ring topology. A mesh network is compared, 

which is formed from a basic ring topology with an additional randomly-chosen 

connection. 

 Number of nodes. The number of nodes ranges between 6 and 50 nodes, which 

represents a reasonable number of clients in a network. 

 Number of subscribed peers. A best-case scenario, where each peer subscribes to 

exactly one other peer, is compared to a worst-case scenario of a full replication. The 

best-case scenario simulates one peer “talking” to another person. The worst-case 

scenario simulates everyone talking to everyone else. 

 Message size. The arrival time is tested under conditions where peers exchange data 

payloads of 1 KB to 4 MB. 

 Network load. Between 0% and 100% of the nodes are involved in periodic chatter with 

another node. This simulates a case where other peers are “talking” with each other. 

The responding variables measured are the arrival times for dictionary keys between two 

subscribed peers and the number of hops required to receive a dictionary key. 

6.2 Results 
The results are organized by first omitting the network latency to model a perfect network. Only 

the queuing delay is considered. Then, the results are compared to a network with delay to 

simulate geographically-distant peers in a non-optimal scenario. 

6.2.1 Queuing Delay and Number of Hops 

The first set of experiments assumes an ideal network with no latency. This allows us to examine 

the effects of queuing delay in various network sizes and topologies. 

Nodes Arrival Time (su) 

Star Line Circle Mesh 

6 109-124 31-390 15-218 31-31 

8 109-124 15-592 15-218 15-31 

10 93-124 31-780 31-390 15-124 

20 78-124 15-1606 15-733 15-265 

50 62-124 15-4570 15-1840 15-405 
Table 7. Arrival times for four different network topologies 

compared to the number of nodes in the network. This case 

has no traffic overhead, no network latency, and paired 

subscriptions. 

 Number of Hops 

Nodes Star Line Circle Mesh 

6 2 1,3,4,5 1,3 1 

8 2 1,3,5,7 1,3 1 

10 2 1,3,5,7,9 1,3,5 1,2 

20 2 1-19 1-9 1-4 

50 2 1-49 1-25 1-6 
Table 8. Number of hops from a sending to receiving node. 

 

The network topology had a significant impact on the arrival times in the P2P dictionary. The 

results in Table 7 show that a star topology achieves an arrival time between 78-124 su, 

regardless of the number of keys or nodes. The reason is that all senders and receivers are only 2 

hops in between, thus there are only two queues to deal with (Table 8). 
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The line and circle topology arrival times are affected by the number of nodes, and thus, the 

number of hops required (Table 8). Their best-case arrival times outperform the star topology 

because there is 1 hop from source to destination. The worst-case arrival time is worse than a star 

topology because the number of hops is linearly proportional to the number of nodes. For 

example, the worst-case arrival time in a circle topology for 10 nodes (390 su) and 50 nodes 

(1840 su) is a five-fold increase in both number of hops and arrival time.  

An interesting case happens in the mesh topology. Arrival times for the mesh topology are worse 

than a star topology, but they are on the same order of magnitude. The number of hops grows 

sub-linearly in the mesh network (see 20 and 50 nodes in Table 8), which gives it a reasonable 

performance up to 50 nodes. 

Both a star topology and mesh topology are suitable for achieving interactive responsiveness in a 

fast network. A mesh topology can outperform a star topology ~40% of the time in a 10-node 

network, ~30% of the time in a 20-node network, and ~20% of the time in a 50-node network.  

It is interesting to note that existing Chord/Pastry substrates promote a finger table to achieve 

better-than-linear hops in a ring structure. I have demonstrated that a finger table is not required 

for network sizes with 50 nodes. 

6.2.2 Network Latency 

The previous results only considered the queuing delay. Now, I consider the effects of network 

latency. Network latency is simulated by computing a theoretical bandwidth and transmission 

delay. Bandwidth delay arises because a physical link transmits data at a limited rate. 

Transmission delay is the time required to send data over a long distance. The P2P dictionary 

simulates delay by sleeping the reader and writer threads for the expected latency duration. 

The current set of simulations assumes that the network has homogenous 100 Mb/s bandwidth, 

which is the maximum theoretical bandwidth of a consumer-level router. The transmission 

latency is chosen from a linear distribution (8–81 ms) using AT&T's network latency 

measurements,
5
 which represents the network latency in the continental United States. 

Nodes Arrival Time (su) 

Star Line Circle Mesh 

4 202-347 25-416 30-59 39-95 

6 196-365 52-843 43-455 23-78 

8 208-362 21-1401 24-465 18-95 

10 218-365 89-1565 42-852 19-449 

20 282-578 44-3400 49-1873 23-809 

50 645-10220 42-9531 36-4733 25-1296 

70 925-20660 75-13536 48-7363 21-1368 

100 1412-30885 34-20036 36-10280 27-1723 
Table 9. Arrival times for four different network topologies compared to the number of nodes in the network. This case 

has no traffic overhead, network latency, and paired subscriptions. 

Table 9 shows the results with transmission delay. The arrival time degrades significantly for the 

star topology at 50 nodes because the central node becomes a bottleneck. Both the line and circle 

topology arrival times grow linearly as the network size grows, which is expected from the 

                                                 
5
 http://ipnetwork.bgtmo.ip.att.net/pws/network_delay.html 
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previous analysis, but they outperform the star topology at 70 nodes because no single peer in the 

network becomes a bottleneck. The mesh topology shows dramatic improvement: the random 

edge reduces the number of hops and avoids a bottleneck at any peer. Its arrival times are 

significantly lower than the other network topologies. 

I conclude from this experiment that a P2P dictionary in a mesh topology provides the best 

scalability at a higher number of nodes. This analysis, however, does not take into account that 

several peers may share the same network router.  

6.2.3 Subscriptions 

To test the effect of subscriptions, I compare pair-wise subscriptions with a fully replicated P2P 

dictionary. The results are presented in Table 10 with only queuing delay and Table 11 with 

network latency. 

Nodes Arrival Time (su) 

Star Line Circle Mesh 

6 93-124 15-405 31-218 15-31 

10 78-124 15-780 31-390 15-93 

20 62-109 187-1638 15-717 15-171 

50 62-124 15-4258 15-1794 15-280 
Table 10. Arrival times for four different network 

topologies compared to the number of nodes in the 

network. This case has no traffic overhead, no network 

latency, and full replication. Compare results with Table 7. 

Nodes Arrival Time (su) 

Star Line Circle Mesh 

6 181-349 66-731 31-377 22-102 

10 231-351 35-1647 26-763 31-309 

20 489-2523 44-3428 33-1601 51-573 

50 829-16228 55-9434 26-4442 46-858 
Table 11. Arrival times for four different network topologies 

compared to the number of nodes in the network. This case has 

no traffic overhead, network latency, and full replication. 

Compare results with Table 9. 

A star topology’s arrival time is mainly affected by the transmission delay and is affected by full 

replication. A central node takes longer to replicate content to each peer. For the line and circle 

topology, full replication has negligible effect on arrival times; only one extra request-response 

loop is added to each client. 

An interesting result appears for the mesh topology. In both Table 10 and Table 11, the mesh 

topology’s worst-case arrival time for full replication is better than for pairwise subscriptions, 

both in queuing and transmission delay (Table 7 and Table 9). The proxy path construction 

explains this observation. In a minimum-subscription case, only one path from the originating 

peer to destination peer is used. In full replication, any faster path from the sender to destination 

can be used. 

6.2.4 Message Size 

The previous experiments transmitted 18 bytes per dictionary entry (a 64-bit encoded time in 

ASCII). In this experiment, the dictionary entries vary in size from 1 KB to 4 MB. Table 12 

shows the arrival times in a 20-node network with no traffic overhead and pairwise subscriptions. 

Theoretically, messages of 12.8 KB should incur a 1 ms delay in a 100 Mb/s link, and the 

bandwidth delay should eclipse transmission delay at 1037 KB. Experimental results show no 

conclusive trends messages less than 1024 KB as expected. Experimental results were not 

conducted at a large message sizes to show insights. A mesh topology, however, is more 

sensitive to message sizes than a star topology because of an increased number of hops. As an 

example, a 20-node mesh network with 4-MB messages has the same arrival time as a 100-node 

mesh network with 18-byte messages. 
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6.2.5 Network Load 

Network load was simulated with adding another set of pairwise subscriptions, which were 

written to 2 Hz with 1 MB messages. Arrival times were measured for load factors involving 2 to 

20 nodes in a 20-node network. The results were similar to Table 9; thus, I could not replicate a 

situation where other traffic delayed the message of another dictionary entry.  

Subscriptions were also tested, which confirmed that a mesh network achieves better arrival 

times than a star topology in a full replication scenario. For a load involving 6 peers and full 

replication, the arrival time was 330-2416 su in a star topology versus 38-526 su in a mesh 

topology. 

 Arrival Time (su) 

Size (KB) Star Line  Circle Mesh 

1 327-551 59-3413 40-1650 40-720 

64 311-574 68-3407 36-1748 46-561 

128 312-600 36-3538 333-1588 48-680 

256 304-578 47-3275 72-1671 24-650 

512 300-855 38-3768 31-1979 41-821 

1024 335-653 73-3989 44-1920 54-872 

2048 286-587 135-4541 61-1977 55-1130 

4906 478-694 183-5097 135-2807 118-1757 
Table 12. Arrival times as a function of message size. Reported for a 20-node network with no traffic overhead, pairwise 

subscription, and transmission delay. 

6.3 Discussion 
If we assume su is a direct measurement for milliseconds, then we can compare the results to the 

acceptable limits for delay. VoIP literature advocates that delays less than 100 ms are 

imperceptible to a user, delays between 100 ms and 400 ms are tolerable, and delays beyond 400 

ms are unacceptable.
6
 The results from Table 9 suggest that at most 10 nodes in a star or mesh 

topology could participate with geographically-distant peers. As the network latency decreases 

until it is negligible, up to 50 nodes could be supported in a mesh topology (Table 7). The 

acceptable limits for delay may be more lenient depending on the type of groupware application. 

6.4 Limitations 
There are several limitations in this evaluation. Several factors affect the results of the arrival 

times. The arrival times are measured suing the DateTime class, which has a known error of ±16 

ms.
7
 The simulation is running on a Windows PC with other background processes, which could 

consume clock cycles while the evaluation was running. Since the process runs on the .NET 

Framework, garbage collection and just-in-time compilation could occur at any time during the 

experiments. Switching between threads of each P2P dictionary instance incurs delay in the 

measured arrival time.  

There are issues with the accuracy of the simulation models. The simulated network latency and 

queuing delays does not consider saturation of a shared physical network edge. Also, I assumed 

that transmission delay follows a linear distribution, which is not realistic for a local area 

network. The assumption of homogenous bandwidth capacity at all peers might be too optimistic 

for a heterogeneous network with wired and wireless connections. 

                                                 
6
 ITU recommendation G.114. 

7
 http://blogs.msdn.com/b/ericlippert/archive/2010/04/08/precision-and-accuracy-of-datetime.aspx 
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To counteract the effects of these limitations, I reported all timing results in su to indicate to the 

reader that they are not true millisecond readings. I also made comparisons of two extremes, the 

best-case network configuration when no latency exists to a poor network configuration where 

all peers cross geographic boundaries. The actual arrival times would then lie somewhere 

between the two extremes. I explain the reasoning why the arrival times would vary in different 

conditions. 

7 CONCLUSIONS AND FUTURE WORK 
This paper designs a P2P dictionary for interactive responsiveness in groupware systems. A 

dictionary data structure is chosen to partition shared memory into application-specific chunks. 

A dictionary’s metadata is replicated to all peers by immediate propagation for optimal 

interactive responsiveness. Subscriptions and delayed replication are used to send relevant 

dictionary entries to interested clients. An evaluation of the P2P dictionary’s interactive 

responsiveness shows that it scales well with small (sub-kilobyte) dictionary entries. 

For future work, I will introduce an adaptive forwarding algorithm where a peer records the 

subscriptions of its neighbouring peers. Knowing a subscription reduces round-trip latency in 

sending a metadata notification, receiving a request for data, and then sending the actual data. 

This addresses the problem identified in the current evaluation where full replication in a random 

topology performs better than 2-pair subscriptions. 

The interactive responsiveness of the P2P dictionary needs to be evaluated in a real network. 

Delays caused by routers, bandwidth saturation, and wireless signal collusion should be 

considered in subsequent evaluations. The amount of time required for conflict-resolution 

mechanism should be determined. Given that this work was inspired by the Grouplab Shared 

Dictionary, the responsiveness of this dictionary should be compared against a true central server 

architecture. 

Other evaluation metrics should be considered in future work such as bandwidth utilization and 

per-peer memory consumption. Initial results for memory consumption show the benefits of a 

mesh topology (Figure 4). Peers should be instrumented to detect duplicate messages, which 

would determine if network coding is beneficial.  
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9 APPENDIX 
HTTP/1.1 200 OK 
P2P-Dictionary: 12345 
E-Tag: “12345.67” 
Content-Location: /data/key 
P2P-Sender-List: 12345 
Content-Type: application/octet-stream 
Content-Length: <length of data> 
Response-To: HEAD 

Table 13. Example message used in immediate propagation 

of a metadata update from a P2P dictionary with ID 12345. 

The key is owned by this dictionary with a revision count of 

67. This is the initiating peer, so the sender list only 

contains this dictionary’s ID.  

GET /data/key HTTP/1.1 
P2P-Path: 12345 
P2P-Dictionary: 6789 
 

HTTP/1.1 200 OK 
P2P-Dictionary: 12345 
E-Tag: “12345.67” 
Content-Location: /data/key 
P2P-Sender-List: 12345 
Content-Type: application/octet-stream 
Content-Length: <length of data> 
Response-To: GET 
 
<data contents> 

Table 14. Example message used in delayed replication at a 

P2P dictionary with ID 6789. The request is made to a 

dictionary whose ID is 12345. 

 

Figure 4. Number of subscribed dictionary entries at each 

node in a 10-node network. 
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Peer Message Notes 

0001  
0002 

GET /data/key HTTP/1.1 
P2P-Dictionary: 0001 
 

Peer #1 requests the key from peer #2, which 
is along the path. 

0002  
0001 

HTTP/1.1 305 Use Proxy 
Content-Location: /data/key 
P2P-Dictionary: 0002 
P2P-Sender-List: 0001 
Response-To: GET 
 

Peer #2 does not have the entry. It tells the 
other peer to make a proxy request. 

0001  
0002 

HTTP/1.1 307 Temporary Redirect 
Content-Location: /data/key 
P2P-Dictionary: 0001 
P2P-Sender-List: 0001 
Response-To: GET 
 

Peer #1 makes a proxy request from peer #2. 
Peer #2 does not have the dictionary entry; 
thus, it forwards the message to another peer 
along the path (to prevent loops, it does not 
to peers in the sender list). 

0002  
0003 

HTTP/1.1 307 Temporary Redirect 
Content-Location: /data/key 
P2P-Dictionary: 0002 
P2P-Sender-List: 0001, 0002 
Response-To: GET  
 

Peer #2 makes a proxy request to peer #3 
because it does not have the dictionary entry. 

0003  
0002 

HTTP/1.1 200 OK 
P2P-Dictionary: 0003 
ETag: “0003.1” 
Content-Location: /data/key 
P2P-Sender-List: 0003 
Content-Type: … 
Content-Length: … 
Response-To: GET 
P2P-Response-Path: 0001, 0002, 0003 
 
… 

Peer #3 has the dictionary entry and returns 
it to the peers on the proxy path. 

 The remaining sequence of push messages 
is identical to Table 13 

 

Table 15. Chain of messages used in a proxy request.  


