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Abstract—We present a method of instructing a sequential
task to a household robot using a hand-held augmented reality
device. The user decomposes a high-level goal such as “prepare
a drink” into steps such as delivering a mug under a kettle and
pouring hot water into the mug. The user takes a photograph of
each step using the device and annotates it with necessary
information via touch operation. The resulting sequence of
annotated photographs serves as a reference for review and
reuse at a later time. We created a working prototype system
with various types of robots and appliances.

I. INTRODUCTION

ROBOTICS technology has made a significant progress
in recent years and now we can see domestic robots
performing various household tasks in laboratories such as
picking up garments from a washing machine, picking and
folding towels, washing dishes in a kitchen, and cooking a
meal. However, most of these operations are preprogrammed
by the developers and are difficult to customize by end
users. Since each home environment is different and each
individual has his/her own way of doing things, we believe
that it is crucial to allow the user to teach these robots a
specific way of doing these tasks.

Example scenarios we have in mind are household chores
that robots could perform automatically [1]. A laundry robot
picks garments from a basket, delivers it to a washing
machine, runs the washing machine, picks up the cleaned
garments, and stores them in a closet. A cleaning robot
moves furniture out of the way, opens the windows, dusts
the shelves, vacuums the room, closes the windows, and
replaces the furniture. A waiter robot opens a table by
cleaning it, arranging place mats and utensils, and delivering
dishes. These scenarios show tasks with sequential structures
and interaction among robots, objects, and appliances.

To achieve this goal, several robot problems must be
addressed. Starting from the low level, a robot needs to
know how to manipulate objects and appliances. A robot
also needs to know how to orient itself and move around in a
domestic environment. Lastly, a robot needs to know how to
complete a high-level task such as “clean my room.” The
scope of this research addresses the latter problem,
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instructing a robot how
sequential task.

We believe that a human should teach the steps of a
sequential task to a robot. A robot is not likely to have the
cognitive abilities of a human in the foreseeable future, but
humans can decompose a complex task in such a way that a
robot understands.

In this paper, we present a method of teaching a sequential
task to a robot using photographs. We introduce a handheld
augmented reality device to create photographic instructions.
The device is similar to a digital camera with touch
operation for annotating photographs. Importantly, the
augmented reality device does not require the robot’s
presence to create instructions.

There are several benefits in using photographic
instructions. First, the teaching is situated in the actual
environment. Second, the user demonstrates where to place
objects. Third, the device ensures that photographs are
properly composed. A properly composed photograph has a
visible subject, object, and verb.

When using the device, icons are overlaid on physical
objects that the robot can manipulate. These icons provide
feedback about the robot’s ability to recognize objects. After
an object’s icon is selected, the device lists available actions
that a robot can perform on the object. For instance, at a hot
water kettle, icons are shown for both a mug and hot water
kettle. The user selects the kettle icon to tell the robot to heat
up water, and the user selects the mug icon to tell the robot
to reposition the mug. Several of these photographs are
taken in sequence to form the steps of a high-level task,
which is then reviewed by the user and executed by the
robot.

We demonstrate this concept in a prototype system with a
basic robot that can move items to a target location and
operate home appliances. We tested the augmented reality
device in two scenarios, preparing a drink and organizing a
room. To prepare a drink, a table top robot delivers a cup to
hot water kettle and other appliances to make coffee. To
organize a room, a robot pushes objects on the floor.

In conducting this research, our paper makes two
contributions. First, we present an augmented reality
interface using a handheld device, which allows for situated
teaching. That is, the user can be in the actual environment
where the task occurs, making it easy to identify
environmental constraints. Second, a sequential task is
represented as annotated photographs.  Annotated
photographs are semantically meaningful to both the user
and robot. The user recognizes the physical environment

to perform a high-level



from the photographs, and the robot interprets the
annotations within the photograph explicitly (e.g., a
photographed home appliance is annotated with a “turn on”
action).

II. RELATED WORK

We discuss several strategies to specify high-level tasks to
a robot such as natural language commands, demonstration,
visual programming languages, virtual simulations, live
video, and photographs.

The goal of this research is to enable a human to specify a
high-level task. Commanding a robot with natural language
commands is the ideal sci-fi solution (consider Jetsons’
Rosie or Star Wars’ 3CPO humanoid robot). Realistically,
we cannot assume that robots will have the same cognition
as humans and learn tasks in the way that humans do.
Rather, a restricted natural language vocabulary may be used
for teaching [2][3]. A natural language interface, however,
requires a user to recall the restricted vocabulary. The
augmented reality device, on the other hand, allows a user to
recognize the available vocabulary visually.

Prior work sought how to teach robots by demonstration
[4]-[6], for example, to manipulate objects by recording a
person’s arm movement [7][8]. Teaching an object
manipulation task is accomplished effectively by
demonstration, but it becomes difficult to review the robot’s
model of the learnt task.

A robot can be instructed using a visual programming
language [9][10], which gives a visible representation and a
recognizable set of operations. For example, the Lego
Mindstorms kit and Microsoft Robotics Studio use blocks
and connections to describe a robot’s sequence of actions. A
storyboard of animated cartoons [11], timeline [12], and key
frames [13] can be wused similarly. Although visual
languages provide stepwise instructions, the user programs
the task away from the actual environment. The augmented
reality device is a forcing function to use the actual
environment for instruction, which has the benefit of
recognizing environmental constraints.

Virtual simulations can approximate the robot’s operating
environment. A simulation can instruct a robot to manipulate
objects [14] and fold a cloth [15]. The Alice programming
environment [16] demonstrates a rich set of tasks that can be
accomplished in a simulation. These systems, however,
require significant effort to update given that domestic
environments change frequently. Photographs can be easily
retaken to account for environmental changes.

Live video can be used to instruct a task to a robot. A user
can manipulate a robot interactively in video by operating
controls seen on the robot [17]. A user can specify where
and what a robot should do in the environment using video
from a ceiling-mounted camera [18][19]. Objects that are
occluded from the camera’s view, however, cannot be
specified using these approaches. Using an augmented
reality device, which prompts the user to rearrange objects,

allows a user to reveal occluded locations.

Our work chooses static photographs over live video
because of irrelevant nuances in video. Nuances introduced
during a live video demonstration (e.g., hand tremor) are
irrelevant to the task and shouldn’t be saved. Consider an
analogy of creating animations: only key frames are
necessary.

The most similar work uses a photograph to restore the
layout of multiple objects on a table [20]. However, they do
not consider sequential tasks that involve multiple objects
and home appliances.

Our approach of building sequential tasks from steps has
been considered in artificial intelligence research. For
instance, a hierarchy of primitive robot operations and
sequences can be used to construct robot behaviors [21].
Whereas prior work is primarily concerned with the learning
algorithm, we explore the human-robot interface and
propose an augmented reality interface.

III. TEACHING WITH PHOTOGRAPHS

We first present an example scenario that uses
photographs to specify a sequential task. We then describe
an exploratory study of using photographs to teach another
person.

A. Example Scenarios

An ideal robot should know how to perform household
chores such as preparing a cup of coffee and organizing a
living room. A preprogrammed out-of-the-box solution does
not work because every household has its own
idiosyncrasies. Photographs allow a user to program tasks
that are tailored to his/her home environment.

Let us consider two examples of teaching a robot using
photographs. Suppose that a user wants a robot to prepare a
cup of coffee every morning. The user takes out a handheld
device (e.g., a smart phone) to teach the steps. The user first
takes photographs of a mug at the different appliances such
as a powder dispenser (to dispense coffee), hot water kettle,
and dining table. The user annotates each of these steps to
ensure that the robot understands the instructions.

In another scenario, the user wants to teach a robot how to
organize a living room. The user takes photographs of
objects on the floor, such as a magazine box and trash bin,
that should be cleaned. Then, the user takes another set of
photographs to show where they should be placed.

B. Exploratory Observations

These example scenarios show a task involving multiple
steps. We conducted a mini-study with four participants
using a regular digital camera to see how people use
photographs to explain a sequential task, identify objects,
and instruct the operation of appliances. We asked
participants to teach another person how to prepare coffee
using only the camera. The environment had a coffee
powder dispenser, hot water kettle, and several mugs.
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Fig. 1. A household robot is taught to deliver a mug to various home appliances and locations.

The four participants were from our research lab with a
university-level education in engineering, but they had no
prior knowledge of this project. The sessions were
conducted in our lab’s kitchenette and were video recorded
for analysis.

Participants took two strategies to identify target objects
and an appliance’s buttons. One strategy was to photograph
the subject of interest without context (in other words, zoom
in). In another strategy, participants photographed their hand
pointing at an object or button.

Three participants showed the movement of objects using
two or more photographs, one photograph to show only the
object and another photograph to show the object at an
appliance. Two participants also photographed the object in
its original location (e.g., on a shelf) before showing a close
up photo of the mug.

No participant was able to use photographs to specify a
time to wait. One participant wanted to add a verbal
annotation. Another participant took three photographs to
represent three seconds, but he wanted to write down the
duration and include it in the photograph. We had expected
participants to photograph a nearby clock.

We learned from this study to allow annotations on
photographs using a tapping gesture. We also modeled the
from-and-to photographs in our design. Some concepts such
as wait were too abstract for photographs and we decided to
present them in a graphical user interface.

IV. AUGMENTED REALITY INTERFACE

Photographs can be as precise or ambiguous as the
photographer chooses. In order to constrain how
photographs are taken, we provide an augmented reality
device to scaffold the creation of interpretable photographs.
By adding annotations to a photograph during construction,
both the user and robot have the same interpretation of the
photograph.

A. Teaching a Task

We created a handheld augmented reality device with a
video-see-through mode, which we implemented using a
Sony Vaio ultra mobile PC (Figure 1a). The device displays
icons and captions on objects in the see-through display as
shown in Figure 1b. The order in which photographs are
taken is the order for completing a sequential task.

The system recognizes two categories of physical objects,
noun objects and verb objects. Nouns are moveable items,

objects that the robot interacts with directly. Verbs are home
appliances, a type of object that affects the state of another
object.

Each photograph is taken as follows. The user creates an
instruction by pointing to an object. A tapping gesture is
used to annotate objects. The user can also specify actions
directly to the robot without a photograph; for example, the
Wait button instructs the robot to wait after the last
photographed step. Next, we describe how to create
instructions for moveable items and home appliances.

1) Delivering Movable Objects

The handheld device can instruct a robot to move objects
such as dishes and trash baskets. We implemented and tested
two types of move instructions. The “move to” instruction
requires two photographs, one for the identifying the object
and another for the destination. We describe the interaction
for delivering a mug to a table as follows (Figure 2):

1. The user frames the mug’s icon in the device’s live view
(Figure 2a). The location such as a table or home
appliance should also be visible in the live view.

2. The user taps the moveable item icon.

3. A photograph is taken and a list of actions appears
(Figure 2b). The user chooses the “move to” action by
tapping it on the display. Multiple objects can be chosen
from the photograph before choosing the “move to”
action.

4. The user physically demonstrates where the mug should
be placed. In Figure 2c, the mug is placed at another
table.

5. The user frames the live view such that the mug and a
location icon are both seen. If the object is not seen in
the photograph, the user is prompted to move the object
to its destination and include it in the live view.

6. The user taps the live view to complete the instruction.

These steps ensure that the instruction is syntactically
valid for the robot. Photographs without annotations can be
interpreted in many ways, for example, a photograph of a
mug and kettle can be interpreted as filling a mug or moving
the mug from the kettle. The annotations ensure that there is
a common interpretation between the human and robot.

A photograph requires sufficient context such that a
location can be identified. Locations are presented as
location icons in the live view. The device prompts the user
to include more photographic context if it cannot be
determined from the photograph. If multiple location icons
appear on the display, the user is prompted to recompose the
live view with a single location icon.
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Fig. 2. Creating an instruction to move a mug from a hot water kettle to a table.

Semantic checks are performed on the instruction. If a
moveable item is placed at an appliance, the device checks
to ensure that an object can be placed there. If the moveable
item should not be moved to an appliance, a “not allowed”
icon is shown. For instance, a plate cannot be used at a hot
water kettle.

2) Saving Object Layout

The augmented reality device provides a “move here”
instruction, similar to the “move to” instruction. This
instruction is provided to photograph an environment’s ideal
state, which replicates prior research in saving table layout
[20]. Only one photograph is taken with both object and
location icons. All relevant object icons must be selected one
at a time.

3) Operating a Home Appliance

Our system supports the operation of home appliances.
The operation of home appliances is similar to controlling
information appliances (e.g., lamps, radios) directly [22].
This work extends prior work to instruct a robot in operating
a home appliance, which in turn modifies an object. For
example, a hot water kettle pours water into a container. An
instruction is created as follows:

1. The user places a target object at a home appliance.

2. The user selects the icon for a home appliance in the
device’s live view (Figure 3). If the appliance requires a
target object and multiple objects are seen, the closest
object to the appliance is selected by default.

3. The user selects an action from a list of appliance’s
actions (Figure 3). For example, a hot water kettle has
the “heat”, “fill”, and “turn on” actions. If there is only
one action, this step is skipped.

4. If the action has parameters, the user is presented with a
sub-list. For example, the kettle’s “heat” action has a
sub-list to set its temperature.

Semantic checks are performed when operating
appliances. In Step 2, a valid target object must be seen in
order to select an action. For instance, a kettle should pour
water into a cup, but it should not pour water onto a plate;
thus, the photograph must contain both the hot water kettle
and cup (presumably under the kettle’s spout) before the fill
action is made available.

4) Instructing the Robot to Wait
The user can tell the robot to wait between photographed

instructions using the “Add Wait” button, which is seen in
the bottom right corner of Figure 2a. When the user presses
the button, the user specifies the duration to wait in a
graphical user interface (Figure 3).
5) Instructing the Robot in Different Locations

The user specifies the spatial context of a move or operate
instruction by including a location icon within the live view.
Locations are used by the “move here” and “move to”
instructions to identify a destination. The system records the
target object’s position relative to the nearest location icon,
which is used when executing the task. Home appliances are

also destination locations for “move here” and “move to”.
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Fig 3. Instructing the robot to operate a hot water kettle (left)
and wait for 30 seconds (right).

B. Reviewing and Executing a Task

After creating sequential steps, the resulting task is
displayed as a sequence of annotated photographs. Each
photograph is displayed with icons, captions, and arrow
lines. A caption for the whole photograph is placed in the
upper-left corner to indicate an action in the photograph, for
example, to “turn on” a faucet (Figure 4b). When multiple
objects are being moved, a circle identifies each object in a
“before” position (Figure 4a). Arrow lines indicate the
movement of objects.

The annotations provide a visible representation of the
robot’s internal model of the task to the user. The user
recognizes that the robot will only interact with the
highlighted objects in the photograph (for example, some
dishes in Figure 4a are ignored).

V. PROTOTYPE SYSTEM

We implemented a prototype system with two household
robots to show the feasibility of the augmented reality
device. The prototype is deployed in a structured home
environment with robots and home appliances. We chose a
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Fig. 4. Annotated photographs.

structured environment because our primary focus is in
human-robot interaction, not the robot’s capabilities.

A. Structured Home Environment

A structured home environment has physical objects,
appliances, and locations predefined in a database (Table 1).
The database contains semantic information about objects
such as their associated types: a moveable item, home
appliance, or location. It also contains information about the
available actions that can be performed on an object or at an
appliance (Table 2).

Physical objects, appliances, and locations are affixed
with fiducial markers for vision recognition. These fiducial
markers are recognized by the augmented reality device and
overhead cameras. Overhead cameras provide a 2D
coordinate space for objects, appliances, and robots, which is
an approach employed for robot localization [23][18].

Affixing fiducials on all objects is not the ideal solution.
However, we believe that our assumptions of recognizing
objects and appliances is reasonable given that there have
been significant progress in pure vision recognition [24] and
wireless tracking technology [25].

B. Robots

We programmed two household robots in our home

TABLE 1. THE HOME ENVIRONMENT FOR TWO SCENARIOS.

Scenarios

Prepare a Drink Organize a Room
Home Powder dispenser
Appliances | Pill dispenser

Hot water kettle

Faucet
Moveable Mugs and cups Magazine bin
items Teaspoon Trash can

Plate
Locations Kitchen counter Anywhere on the floor

Dining table

environment. The first robot is a custom-made robot
(14x11x8 cm, Figure 1d) with a claw to grab objects up to
16 cm wide on a flat surface such as a table. We hard coded
a single grabbing angle, but it is possible to compute the
grabbing angle with on-board sensors. The second robot is
a modified iRobot floor robot, which is used to push objects
around. Given the ability of both robots, all moveable items
are registered to either “move to” or “move here” actions.

TABLE 2. AVAILABLE ACTIONS AND PARAMETERS

Subject | Possible Actions
All moveable items Move to
Move here'

Power dispenser Dispense (1, 2, or 3 seconds)

Pill dispenser Small pill, medium pill, large pill
Hot water kettle Fill (1, 2, or 3 seconds)
'“Move here”is available only in the room scenario.

In our current implementation, the robots are remotely
controlled by a computer. This computer receives a copy of
the instructions from the augmented reality device and
combines it with the current positions of objects and robot

obtained from overhead cameras. The instructions provided
from the augmented reality device are of the following form:
Move_To(Mug A, Position B, Offset (x,y))
Operate(Appliance C, Mug A, Action D, Parameters E)

The computer converts these instructions to low-level
robot control signals. The robots can move forward, move
backward, turn left, turn right, grab, and release using a
wireless Bluetooth connection. The process of converting
high-level instructions to low-level robot control signals is
situated within automated planning and scheduling, a sub-
topic of artificial intelligence research. Methods such as
STRIPS (Stanford Research Institute Problem Solver) and
PDDL (Planning Domain Definition Language) can be
applied to this problem, but it is not the main focus of this
research.

C. Home Appliances

We built three custom-made home appliances in our home
environment: a pill dispenser, a powder dispenser, and an
electric hot water kettle. The pill and powder dispensers are
built from scratch. They dispense their contents into a
container that is placed beneath the device’s outlet. The hot
water kettle is built by adding wireless control to an off-the-
shelf electric hot water kettle.

Ideally, all appliances will be controllable by robots,
either by manipulating its physical user interface (i.e., knobs,
dials, and buttons) or electronically. Our research simulated
an electronic interface because we expect an appliance-robot
interaction more similar to Star Wars’ R2D2 (digital
interface instead of a physical interface). This is a realistic
assumption given that there is recent research showing how
to adapt home appliances for electronic control [26].

D. User Tests

We created two scenarios, preparing a drink and
organizing furniture in a room, to demonstrate our method of
instructing a robot using an augmented reality device.



Table 1 lists the objects that were included in the test
environment.

We ran the robot successfully in preparing coffee, pills,
and delivering water; and in rearranging floor objects. We
also invited seven participants, which were recruited from
our research lab but did not have experience with robot
programming, to test the teaching interface with these tasks.
We showed the robot to participants, but the robot was not
interactive during the tests. From these preliminary
investigations, participants quickly learned the idea of our
system. When teaching a robot to reposition an object, about
half of the participants preferred photographing goal states
(a single photograph showing the ideal set up once a robot
finishes) whereas the other half preferred the “move to”
instruction. Participants liked the syntax checks provided by
the device, but they were confused by the preprogrammed
semantic checks and attributed lock-out conditions to
recognition issues.

VI. DISCUSSION AND CONCLUSIONS

Although new objects can be added easily with
photographs, photographs make it difficult to generalize the
teaching result. It makes it difficult to refer to photographed
objects by their attributes (for example, “the nearest mug” or
“a red item”) and function (for example, “an item that
separates tea leaves from liquid”). For future work, we plan
to add a cartoon-like graphic to identify objects based on
attributes.

The proposed technique is demonstrated with robots that
push objects around. The user interface can be extended to
show a variety of actions such as “grab” (from the side) and
“forklift” (lift from underneath) by showing additional
actions in Figure 2b. Another extension could allow
photographed areas to be selected. As an example of
vacuuming, the user could photograph the area to clean.

Although an all-in-one robot is possible, robots will more
likely cooperate with existing home appliances to
accomplish tasks. A robot can be taught how to clean clothes
by soaping, rinsing, and wringing, but a washing machine
already does this sequential task efficiently. A robot will still
be required to place objects in the appropriate home
appliances and destinations, a scenario which we have
described in this paper.

We have only considered how to teach a single sequential
task to a robot. We have not considered how to compose
sequential tasks into goals (operate until an environmental
state is achieved) and behaviors (hierarchical composition of
sequential tasks) [21] using the AR interface. We have not
yet considered how to specify control structures such as
loops and branches in photographs.

In conclusion, this paper presented an augmented reality
system for teaching sequential tasks to a robot. The sequence
of annotated photographs serves as a visual representation of
the procedure for both a human and robot. We showed the
feasibility of the method with a prototype robot system using
various household robots and home appliances.
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